PLANETARY FLOW PATTERNS IN THE ATMOSPHERE
By C.-G. RossBy

The general purpose of this paper is to discuss the factors which determine
the character of the prevailing flow patterns in the atmosphere, and in
particular to bring out the conditions under which these flow patterns tend
to remain stationary or to change. It has been written with the primary
objective of presenting certain theoretical tools which appear to be helpful
in the interpretation of and forecasting from consecutive weekly mean sea
level pressure charts for the Northern Hemisphere. Maps of this type have
been prepared at the Massachusetts Institute of Technology during the last
few years in connection with a general research program sponsored by the
U.S. Weather Bureau and aiming at the development of rational methods
for the preparation of weather forecasts of a week’s range or more.

The present article may be considered as an outgrowth of a speech before
the joint meeting of the Royal Meteorological Society and the American
Meteorological Society in Toronto in August, 1939. Some of the results
presented at that time have already been published in the Journal of Marine
Research (Rossby 1939) and will be discussed only very briefly below. Other
ideas, barely touched upon at the Toronto meeting, have been developed
further and will be treated in detail at the present time.

Most of the results presented below are readily obtained with the aid of
Bjerknes’ circulation theorem, which has been available to meteorologists
for the last forty years. Under these circumstances it is rather startling that
no systematic attempts have been made to study the planetary flow patterns
in the atmosphere, particularly in view of the fact that far-reaching investiga-
tions of oceanic flow patterns were undertaken by Ekman a number of years
ago (Ekman 1923).

The process of averaging pressures over periods of one week to some extent
eliminates the horizontal pressure variations associated with such typically
barocline phenomena as moving wave cyclones. The pressure systems of the
weekly mean charts are of larger dimensions and correspond to the so-called
“centers of action” in the atmosphere.

On the winter maps there are normally at least five such centers to be
seen, the Icelandic and the Aleutian Lows, the Azores and the Asiatic Highs
and finally the Pacific High, but one or several of these centers frequently
breaks up into two parts. It is well known that these perturbations at
higher levels no longer appear as closed isobaric systems but merely as
undulations in the prevailing zonal pressure distribution.

In the following discussion these centers of action will be considered as
quasi-permanent perturbations on the basic zonal (west-east) winds of the
atmosphere. While the maintenance of these zonal winds obviously cannot
be explained merely through an analysis of motions in a barotropic atmos-
phere, it will be shown below that a first indication of the factors that control
the size and movements of the atmospheric centers of action may be obtained
from a theoretical study of certain simple stationary and moving barotropic
perturbations superimposed on a constant or slowly changing zonal wind
system.

The ordinary gradient wind equation furnishes no clue to the inter-
pretation of the horizontal pressure distributions (flow patterns) observed
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in the atmosphere. In particular, it leaves unanswered two basic questions,
viz:

1. Do certain preferred flow patterns exist which are more readily
established than others?

2. When will an arbitrarily prescribed flow pattern tend to remain
stationary and when will it change or move?

The gradient wind equation is unable to help us answer these questions
since it is always possible to find a theoretical wind blowing along the isobars
and of such a speed that the corresponding deflecting and centrifugal forces
precisely balance the horizontal pressure gradient. If, however, the resulting
gradient wind field is studied with the aid of the equation of continuity,
regions of lorizontal convergence or divergence (pressure rise or pressure
drop) will appear, indicating movements of or intensity changes in the
initially observed pressure system. This combination of gradient wind
equation and equation of continuity (J. Bjerknes 1937) has been of great
value in stimulating research dealing with the nature of the horizontal pres-
sure fields in the atmosphere and offers at least a partial answer to the second
of the two questions posed above. The method does, however, suffer from
some weaknesses, The most obvious is the assumption that gradient wind
equilibrium prevails even though the systems studied generally are non-
stationary. It is well known that in case of rapidly moving systems the
neglected acceleration terms may reach the same order of magnitude as the
centrifugal and deflecting forces.

"~ The second and more basic objection to the procedure lies in the fact
that it erroneously implies that the displacements of the observed -flow
patterns are caused by the isallobaric systems resulting from the horizontal
convergences and divergences associated with the initial gradient wind
distribution.

In the paper already referred to I have given an example of a wave motion
without lateral boundaries which is purely horizontal and hence free from
horizontal convergence or divergence, but which nevertheless may be non-
stationary. The effect of lateral limits was studied by Haurwitz (1940). This
example will be discussed further in this article to bring out the fact that
the factors determining the stationary or progressive character of the motion are
to be found in the vorticily distribution and that the displacement of the pres-
sure field is a secondary effect.

the two equations governing the horizontal components of motion. The
resulting equation expresses the fact that vertical atmospheric columns,
moving across the surface of the earth, must preserve their individual abso-
lute vorticity after allowance has been made for such vorticity changes as
may result from horizontal shrinking or stretching.

The absolute vorticity is made up of a vorticity relative to the rotating
earth and of the vorticity of the earth’s own rotation around the vertical.
Since .the latter factor varies with latitude it follows that the relative vor-
ticity of a moving column must vary in a definite fashion with latitude.
This variation in turn imposes certain restrictions on the radius of curvature
of the trajectory described by the column. It follows that under steady or
nearly steady conditions certain preferred flow patterns are established, merely
as the result of the prescribed variation with latitude of relative vorticity.

To establish these patterns we shall consider an atmosphere consisting
of several homogeneous, incompressible strata, each moving without change
in its density. Thus we take the effect of stratification into account, at
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least in a crude fashion, while leaving out of consideration the effects of com-
pressibility. Within each of these homogeneous layers, the equations for
frictionless motion are

du 1 ap
W FrARtair e =

dy 1 9p
@ FR

and the equation of continuity

aD du dv
@ #7-2(5+5)
) ) . ap ,dp
% and v being the horizontal velocity components, % and 3y the compon-

ents of the horizontal pressure gradient and D the depth of a vertical fluid
column extending throughout the entire homogeneous layer under discussion.
It is evident that this formulation of the equation of continuity implies that
the horizontal velocity components do not vary with elevation within the
layer D. The symbol f represents the Coriolis parameter, 22 sin ¢, where ¢
is the latitude and § the angular velocity of the earth.

It will be assumed that the y-axis points northward, the x-axis eastward.
Thus

(4 3= "5 =Ry,

®) b=

a being the radius of the earth. The quantity 8 has been computed pre-
viously (Rossby 1939) and will be treated as a constant below. The table
for B is reproduced for the convenience of the reader (Table I).

TABLE 1
VARIATION OF {3 WiTH LATITUDE
Latitude B.10%cm-1sec-t

90° 0.0
75° 0.593
60° 1.145
45° 1.619
30° 1,983
15° 2.212

0° 2.290

If the relative vorticity is designated by ¢, so that

dv  du

(6) §'=é-;c—a—y
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one finds through cross-differentiation of (1) and (2) and after more simpli-
fications,

& & =t (G +55) -

® Lo (FErg)

and finally, with the aid of the equation of continuity

a ff+8\
9 Et_(_.___)_
dv

ou
This analysis is based on the assumption that the terms L and 'wgz—

may be neglected within each layer, an assumption we know to be correct
in the steady state, since the gradient wind is independent of elevation in a
barotropic medium, but the assumption is probably well justified also in
large-scale non-stationary barotropic systems. Thus the absolute vorticity,
f+¢, must be proportional to the depth of the fluid column as it moves over
the surface of the earth,

(10) f+¢=¢D,
where ¢ is a constant which may vary from one trajectory to the next. The
last integral may be written

(11) £ =Fok(fo=f) +(ft o) S5t

which connects initial conditions (subscript 0) and later conditions (no sub-
script) of the same fluid column. In the absence of depth variations this
equation reduces to

(12) $+f=Fotfo,

an equation which was used previously to explain the behaviour of pertur-
bations on the zonal west winds of the atmosphere.

If the atmosphere consists of a finite number of layers of constant po-
tential temperature, each having a finite thickness and moving adiabatically
and all of them arranged in stable position so that the potential temperature
increases from one layer to the one next above, then the equations of mo-
tion change into

du ar
(1b) @ =fo— 3 (zr =¢,T, cp=specific heat)
(T =absolute temperature)
@) L S
dt ady
and the equation of continuity into
dA du 0v
(35) -0+ o)

where A now measures the weight per unit cross-section of an individual
vertical air column of the layer in question, expressed as the difference
in pressure between the bottom and the top of the column. In the same
fashion as before one obtains

2(41) o
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It is possible to derive corresponding results also for an atmosphere in
which the potential temperature varies continuously with elevation and in
which all displacements are adiabatic but the preceding demonstration is
adequate for our purposes. The generalized treatment will be presented in
another place.

Integration of (9b) gives

(10b) f+E=cA

or
(11b) §'=§'u+(fo—f)+(fo+§'0)%—‘oé'n‘

In the application of (11) and (11b) to a medium with continuous density
or potential temperature variation along the vertical it becomes necessary to
consider infinitesimal sheets of air limited by adjacent isopycnal surfaces
(0 =constant, p+38p =constant) or by adjacent isentropic surfaces (6 =con-
stant, § 4-66 =constant). The assumption is then made that the fluid inside
such a sheet is characterized by a constant mean density, p=p-+1dp=con-

stant, or by a constant mean potential temperature, § =60+ 360 =constant,
In the computation of the relative vorticity it must then be remembered that the

ax
stant density or constant potential temperature and really should be written

(), (), ), (),

in accordance with the procedure adopted in thermodynamics. A rigid proof of
this statement will be furnished in another place.

The two equations (11) and (11b) state that the relative vorticity of a
fluid column at any time is equal to the sum of 1) the initial vorticity of the
column, 2) a term (fo—f) representing gain in relative vorticity due to dis-
. placements along the meridians and 3) a term representing gain due to ver-
i tical stretching.

The constant occurring in (10) and (10b) is obviously a characteristic
of the particular air column to which the analysis pertains. It has been
suggested by my collaborator, Mr. V. P. Starr, that this characteristic con-
stant which presumably varies from one fluid element to another might be
used for identification purposes in the analysis of air masses. A report on
this ingenious method of utilizing the vorticity theorem will be given by
Messrs. Starr and Neiburger (Starr and Neiburger, 1940) in another place.
Here it is enough to mention that the constant ¢, the physical meaning of
‘which is not very clear, may be replaced by the ¢y in (11) or (11b).  This
quantity, which may be called the potential vorticity, represenis the vorticity the
air column would have if it were brought, isopycnically or isentropically, to a
i standard latitude (fo) and stretched or shrunk vertically to a standard depth Do
or weight Aq.

‘ It is convenient to choose for fo a value of exactly 107 sec.™, corresponding
to a latitude of about 43°N. If one considers a sheet of air limited by isen-
tropic surfaces 4° or 5° apart it is convenient to choose A equal to 100 mb.

In order to interpret the results of the preceding analysis, it is necessary
to express the relative vorticity in a physically readily understood form. It
is well known that in case of cyclonically curved streamlines

¢ dc
13 =5 9,
(13) e % ta

i i} . . .
operalors — and 3y refer to variations with respect to x or y inside a layer of con-
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where ¢ is the wind velocity, R is the radius of curvature of the streamline
. . e . dc.
at the point (P) for which the vorticity is to be determined and 318 the rate

of shear of the wind at the point (P), the coordinate » being counted from
the centre of curvature toward P,

In the case of anticyclonically curved streamlines one finds

(14) r=~(%+j—j>~

However, expression (13) may be used for both cyclonically and anti-cyclon-
ically curved streamlines, provided both R and r always are measured from
the centre of curvature and counted positive from left to right when facing
downstream,

The two expressions (13) and (14) show that vorticity may express itself
either as shear or as a curvature of the streamline. This point has been
discussed in detail by Ekman (1932).

We shall next apply the vorticity theorem derived above to a study of the
dynamic stability of deep westerly and easterly winds and of the nature of
the flow patterns that result from the application of small disturbing impulses
to such current systems. For this purpose we shall consider a ‘steady, narrow
air current in an isentropic atmosphere, surrounded on both sides by resting
air. In view of the barotropxc nature of the system, the winds do not vary
with elevation.

Next we select an arbitrary horizontal curve. S, consisting of sections
across the narrow current at two points, 1 and 2, with connecting portions
of the curve in the surrounding resting fluid. Section 2 is downstream from
Section 1. We know that

180

for all the fluid columns enclosed by S and thus

(5) ”A g (f ”) 86y =0
A

Here the integration extends over the entire area 4 enclosed by S.
1t follows from the assumption of steady motion that (15) may be trans-
formed into

d (f+§ d (f+¢
(16) J-J[uAa—SC <T) +UA(—9—& (T)] Sxdy =0
A

or, after integration by parts,

an _”[ (uf+0)) + {vcf+s~>}]axay—

Jf+§‘(6uA dvl 58y =0.

The second integral vanishes because of the requirement of continuity and
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the assumption of a steady state. Transforming the first surface integraj
into a line integral, one obtains

(18)

J'c,,(f-l-g‘) . 80=0,

A

do being a line element of .S and ¢, the outward velocity component norma
to S. We know that ¢, vanishes in the portions of S which fall within the
resting fluid and thus it follows that

(19)

J'c(f+§')60' =Jc(f+§‘)5o’ =constant,
1) 2

“or, the absolute vorticity iransport across any section of the current is constant.
In this expression ¢ is the downstream velocity.
It follows from a combination of (13) and (19) that

(20)

¢ , dc¢
Jc (f + R + 61’) dr =constant,

For sufficiently narrow current systems it is permissible to assume R to be -
constant across the current and thus it follows that

(21)

, ]
the term contributed by the shear 2%

r: r:
b '[c or + Jii Ic’&r =constant,

ry n

ar

vanishing since ¢=0 for r=r; and for

r=rs. These two values represent the boundaries of the current in any one
section. It is evident that

(22)

(23)

rs
J'c6r=V
n

141

Jc’6r=M

123

the momentum transport per unit depth and for unit density. One finds

then, that

(24)

along the trajectory of the current. For anticyclonically

(25)

. M
Vorticity transport = fV'+ %= constant

. . M
Vorticity transport=fV — z = constant.

curved systems

Both"equations express the fact that the total absolute vorticity transport

remains constant from section to section along the current.

Equation (24)~
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can be used for both cyclonic and anticyclonic trajectories provided one
adopts the convention that R is positive in the former, negative in the latter
case.

The two equations (24) and (25), expressing the constancy of the vor-
ticity transport, apply also to the vorticity transport between two adjacent
stream lines, provided the shear can be neglected. Thus these equations
should be applicable to the motion near the axes of the broad atmospheric
current systems.

The constant on the right side in (24) or (25) may be given another inter-
pretation. In case of a steady, curved and narrow stream (cyclonic curva-
ture) in an isentropic atmosphere, the balance of forces normal to the current
axis is expressed through the equation

¢ 1 0dpe
(26) fC'I'E—po'é;r
po being sea level pressure, py sea level density, and the transversal coordinate
r being counted from the centre of curvature toward the streamline. The
sea level density is constant along a streamline (isobar). If cross-current
variations in R, the radius of curvature of the streamlines, are neglected, it
follows after integration across the current that

27 Vorticity transport=f V+ %= (cyclonic case)

Pu
0
Apq being the total (positive) pressure dxfference across the current and g,
the mean sea level density across the current.

It follows from a comparison of (24) and (27) that this pressure difference
must remain constant along the trajectory of the steady current. The reason-
ing is easily extended to the anticyclonic case which gives

(28) Vorticity transport=fV — % = %

(anticyclonic case)
provided R is counted positive also in this case.

The absolute vorticity transport of an anticyclonically curved current
vanishes when Ap, vanishes and our fundamental equation then reduces to

the form
r:

- Sc2or
M c - M 4
(29) R—fV= rE c= e
\cor

where ¢ is a mean velocity. This equation is identical with the equation for
the inertia path, which thus appears as one of the permissible trajectories of
constant vorticity transport, satisfying the particular requirement of zero
absolute vorticity transport.

We shall make use of (27) and (28) to investigate the stability of deep
westerly and easterly winds, respectively. The vorticity transport of a
narrow, straight west wind current is given by the expression foV, fo, being the
value of the Coriolis’ parameter at the latitude of the current axis (y =0). If
at a point x =0 the moving current is deflected northward, the streamline
must possess cyclonic curvature (R>0) in a narrow region ¥>0. The vor-
ticity transport in this same region has the value

(30) V42 (fot8) V4 % oV
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It is easily seen that the extent to which the current can push northwarg
is limited by the cyclonic vorticity of the initial perturbation. As y increases

é— must decrease and finally vanish (inflexion point). For still larger y-valyes

1 . . . . .
7 becomes negative and the current acquires an anti-cyclonic curvature

which brings it back toward the initial position. Thus, in this sense, such a
narrow, deep west wind current is stable. The initial cyclonic vorticity of the
perturbation is soon checked by the increasing anticyclonic vorticity as-
sociated with the northward displacement; downstream from the initial per-
turbation point the current will simply tend to oscillate around an equilibrium
position. The differential equation for this stable perturbation pattern is™
best obtained by shifting the origin (y=0) to the mean position of the dis-
turbed current. This mean position must obviously coincide with the in-
flexion points in the current. Thus

M
@1) IV+ % =fV

is the equation for the current, provided R is positive for cyclonic curvature,
negative for anticyclonic. From this equation it follows that

M
(32) ﬁyV+—E =0
and, since ,
1 _dy dy\?]"3
(33) —ﬁ‘a;z'[”(a)] ,
(39) pyv . 2 14 (2Y g =0
Y e dx '

A first integration of (34) is easily accomplished. Through the sub-
stitution

dy dg _dy
(35) axt —Q-@. Q—Ex—)
one obtains ’

3
V ——
36) B vay+(14+¢) . adg=0
or
BV 2
(37 =¥ - =constant.
M Vitg

If o signifies the northernmost displacement of the current from its mean
position (¥ =0) one finds

BV 1
38 ~ . (y2—9) 2| 1 = ——=—— | =0.
(38) D ¥ [ 1 +q’]
For long perturbations of small amplitude (jg|<<1) this gives
2%
27 o
(39) ¢t =57 ré =5,

or
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(40) ds_ BV e gl

This equation is readily integrated and gives

(41) s= 2 =sin /‘/ﬂj/x=sin x/‘/é
Yo M c

Here x is counted from the point where s vanishes. It is obvious that (41)
corresponds to a simple harmonic stationary wave. The wave length L is
given by the relation

42) /‘/E.L= /‘/ﬁ,.L=21r
c M

M H
- =2 ,
(43) L=2r 4/@ " 5

where ¢ is the mean velocity defined in (29). This expression for the wave
length of a stationary perturbation on a narrow west wind current is in per-
fect agreement with the result obtained earlier (Rossby 1939) for a stationary
perturbation on an infinitely broad west wind and appears thus to have a
considerable broad general validity. For convenience, a table for this
stationary wave length L as function of ¢ and 8 (latitude) is reprinted below
from the earlier report (upper figure in each box of Table II).

or

TABLE 1I
STATIONARY WAVELENGTH L (IN KM) AND DIMENSION %2 (IN KM) oOF

STATIONARY PLANETARY EDDIES AS FUNCTIONS OF ZoNAL WIND VELOCITY
¢ AND LATITUDE ¢. ToP FiGure GIiveEs L, LowgErR FIGURE GIVES k.

N 4 m/sec 8 m/sec 12 m/sec 16 m/sec 20 m/sec

0° 2626 3714 4548 5252 5872
591 836 1024 1182 1322

15° 2672 3779 4628 5344 5974
601 850 1042 1203 1345

30° 2822 3990 4888 5644 6310
635 898 1100 1270 1420

45° 3120 4412 5405 6241 6978
703 994 1218 1406 1572

60° 3713 5252 6432 7428 8304
836 1182 1448 1672 1869

75° 5160 7208 8938 10321 11539
1162 1643 2012 2323 2597

It is evident that the waves of small amplitude here discussed intersect
the x-axis at a very small angle. Another extreme case is provided by a
current intersecting the axis at right angles. It then follows that

dy

| T =g=o for y=0
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and hence, from (38),

14 T
44) — vf=2, yo=1414 /‘/__.
M B
Substitution gives
(45) y__ 1
o' /1 +q2‘

A quarter of a wave length is obtained by integration between y =0 and
y=v The result is

(46) L= 4yoJ Sds -5656,‘/ J s'ds _3.39,‘/‘32

Itis apparent that this stationary wave oi finite amplitude is considerably
shorter than the corresponding stationary wave of very small amplitude. In
figure 1, both types of waves have been entered for comparison. The two

solutions compared are
s

__VZJ stds — =arc sin s.
15t
A N

In the first of these curves

5=£,yo=\/2_~4/£,3\/2—= 2 —
Yo B 1/1
B

in the second the value of ¥, is arbitrary but obviously small in comparison

with /2 ,‘/ —% . The non-dimensional coordinates used in figure 1 are

x___and y,__-
z z
1/:3 4/13

In the case of a narrow easterly current flowing through resting fluid along
a fixed latitude circle the vorticity transport is constant and given by f,V.
If the current is disturbed and deflected slightly southward, west of a certain
longitude, it follows that the current will have a slight cyclonic curvature.

. . . .M )
Its vorticity transport now is given by fV+ T where f is smaller than fo,
the current all the time moving toward more southerly latitudes. As the
current continues southward, f decreases, 7 increases, and the current as-

sumes a steadily decreasing radius of curvature away from its original direc-
tion. Finally the current has turned around completely and begins to move
north, while still turning around cyclonically. Ultimately it reaches its
original latitude and continues westward.

It appears from this analysis that a slight deflection southward would

* cause an initially straight, narrow current from the east to make a complete
: cyclonic circuit. It is likewise easy to see that a slight initial deflection

northward would cause the current to describe a complete anticyclonic
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circuit. It would thus appear justifiable to state that easterly wind currents

n such a barotropic atmosphere are unsiable and must break up into intermit-

tently re-established cyclonic or anticyclonic vortices as a result of very
small impressed forces.

aix

F1G. 2

Stationary cyclonic and anticyclonic eddy patterns of limited
width resulting from the breaking up of dynamically unstable
easterly winds, Geometrically these é)ow patterns are similar to
inertia paths at the equator, but physically they are of a different
nature and can appear in any latitude,

The cyclonic and anticyclonic trajectories described above are represented
in figure 2. The mathematical analysis is simple. We place the x-axis along
the latitude of the undisturbed current and count x positive eastward from
the longitude where the rotating current appears as a pure south wind (anti-
cyclonic case). The equation for the vorticity transport is

M

or

M
(48) ByV=+.

Inserting the value for the radius of curvature one obtains

3
(49) 5yV=M[1+ ((%yc)z] 2 .g%.
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We shall introduce a length 7 defined by

(50) he /2 _ %
gV B

and also make use of the substitution (35). Then it follows that (49) changes
into

3
2yd -3 dy
& 2o e (-3)
or, if :
A dy dy
(52) ﬂ—k,f——h—-Q—E&—d—E,
_3
(53) tnin= (1+¢) de
Integration gives
2
(54) 2= — ——=+ K, (K is a constant).
Vitg
For large x-values 1 and ¢ must both vanish. Thus
(55) 0=-24+K
and
(56) S
- 1 +q2 N

At the point where south wind prevails ¢ is infinitely large. It follows
from (56) that the current has turned 90° at a distance =1 or y =k to the
north of its original latitude.

We may now solve for ¢ and find

57 —_1Vi-m _dy
(57 g - T
Integration gives .
(1—ndq
53) = )=t/ D=p=1
( ¢ J.y\/Z——;; O=2=0

1

The upper half of the trajectory is likewise obtained from (48) but the
absolute value of the radius of curvature is now obtained from

3
L __ [, (P E
® r s+ (@]

Thus, after integration
(60) 2y = 2 +K’.

Vitg
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It has already been shown that

(61) n=1 for g=w.
Thus,
(62) 7=
\/ 1 +q
and
(63) g= 77‘\/2 -7 _dn

=1 dk
Integration gives

$=j_’f_—_dn (1=9=4/2).
1

It follows from (63) that the current blows from the west at the point

where g vanishes, that is, at a point where = \/2— ory =h\/i The dimension
of this trajectory as measured by £ is tabulated in table 2 (lower number in
each box).

Up to this point we have been dealing with parrow currents flowing
through a resting medium and this method of attack has enabled us to studyv
stationary or, in the case of east winds, intermittently re-established quasi-
stationary patterns of finite dimensions. The wave patterns studied in the
first report were all of small amplitude, since it was assumed that second
order terms could be neglected in the mathematical analysis. The fact that
both theoretical attacks lead to the same value for the wave length of sta-
tionary waves should materially strengthen the confidence in the result. On
the other hand, it is quite evident that a narrow current must be subject to
rapid mixing with its environment and thus gradually lose its identity. Thus
the principal value of the preceding analysis of narrow currents lies in the
fact that it brings out the basic difference between the stability of easterly
and westerly winds.

We shall next attempt to answer the second question presented in the
introduction to this paper; namely, when will an arbitrarily prescribed flow
pattern tend to remain stationary and when will it change or move? Itis
well known from the theory for absolute two-dimensional motion in ideal
fluids that the vortex filaments, which in this case extend normal to the plane
of motion, are carried along as conservative properties by the moving fluid.
In our case the poleniial vorticity is conservative and carried along by the
fluid.

Under stationary conditions streamlines and trajectories coincide, and
along such a stationary trajectory potential vorticity must remain constant.
Thus, an observed state of motion in a barotropic sheet in the atmosphere
can be steady only if lines of constant potential vorticity and streamlines
coincide. If they intersect, the relative orientation of the two sets of lines
permits one to predict the instantaneous direction of change in the potential
vorticity at any given point and, if depth changes can be neglected, also in
the actual relative vorticity.

We shall illustrate this by an application to the simple two-dimensional
wave analyzed in my previous report.

The velocity distribution is given by a positive constant zonal velocity U
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along the x-axis (pointing eastward) and by a perturbation velocity v’ along
the y-axis (pointing northward). This velocity is given by

(64) v =1y cos 2175 (x —ci).
The wave velocity ¢ has the value
BL
(65) c=U- i

The streamlines may be computed from

dx dy
(66) T =
and one finds, for the time =0
voL . 27x

ine= ——,SIn ——*
Y stream line 2wl i

The trajectory of the particle which at the time £=0 passed through the
point x =y =0 is given by integration of the simultaneous equations

dx . dy _, 2T

()] 7= U, 5 =Vecos (x —ct).

It follows that
dy 2w

(68) % —vucos-f(U ot

and
vw'lL . 2r

(69) = m sin T (U-o)t

or
ool sin 21r U—c
(70 Y trajectory = 21T(U C) i — 5 X

The potential vorticity {p is defined by

1) fomi4f~fo={+By = +f.
It follows that
(72) So=By— g7z—osin = (x—ct).

The particular line on which the potential vorticity vanishes is given by

27wy’
(73) Y pot. vgrocity 6L0 sm A (x ct)

and, at time £=0 by

2wv . 2mx
(14) Y pot. verocity = -ﬁ—L—o' sin T

The following points of interest are brought out by this analysis:



34 PLANETARY FLOW PATTERNS

A. The ratio of the amplitude of the trajectory to the amplitude of the

UUc . Thus individual particles move farther north and
south than the streamlines seem to suggest when the waves move eastward,
and move less far north and south than the streamlines seem to suggest in
the case of retrograde waves.

B. At a prescribed time, streamlines and lines of constant potential vor-
ticity cotncide if

(75)

streamline is

vn’L _ 21!"00’

~3arjy %0
A ’°§°’”‘ c\ \ b/ |E

~4at .5

5\ . -5
-2:l0 =210 116° 8 o

T

FiG. 3a

Relative orientation of stream lines and lines of constant
potential vorticity in short wave (L=3Ls). The amplitude of the
wave, @, has been so chosen that 8a =0.5 10-%sec-!, and consequently
the potential vorticity increases northward by that amount in the
distance a. It is seen that the two sets of lines intersect in such a
fashion that the potential (and hence the actual) vorticity must
decrease between B and D, increase on both sides thereof, It is
easily seen that as a result, the line of zero vorticity (C) must be
displaced eastward, i.e. the wave is progressive.
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(76) L=L,=2 1/?
"V B

which is precisely the condition for stationary waves.
The ratio between the amplitudes of the constant potential vorticity lines
and of the streamlines is

(17)

or

4rtU U

8L U—c

and thus the potential vorticity lines have greater amplitude than the stream-
lines for short waves (L<L;) and vice versa for long waves (L>L,). The
three cases are illustrated in figure 3. The relative orientation of the two

sets of lines contains the explanation of the different behaviour of short and
long waves.

Fi6. 4

Stationary horizontal flow patterns superimposed on barotropic
atmosphere in steady zonal circulation. The undisturbed Easterlies
to the North have a velocity of 8.9 mps., the undisturbed Easterlies
to the South a velocity of 13.3 mps. The Westerlies in middle
latitudes have a velocity of 15.5 mps. This last velocity gives a
stationary wave length of sixty longitude degrees.
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In order to achieve a certain amount of verisimilitude, suitably chosen
flow patterns of the types computed in the present paper have been drawn
on a chart for the Northern Hemisphere (Fig. 4). It has been assumed that
steady west winds prevail in middle latitudes and the mean west wind velo-
city (¢) has been so chosen as to give a stationary wave length of 60° of longi-
tude. The corresponding mean wind velocity is 15.5 m.p.s. in latitude
32.5°N. The two belts of easterly winds far to the north and to the south
will, because of their dynamic instability, break up in eddies. The dimensions
of the cyclonic eddies drawn to the north (£=10° of latitude) require an
undisturbed current velocity of 8.9 m.p.s., and the anticyclonic eddies to the
south (5 =10° of latitude) require an undisturbed east wind velocity of 13.3
m.p.s. About the only thing that can be said is that these velocities are
reasonable, and that the dimensions of the flow patterns thus computed
correspond in a fairly satisfactory manner to the appearance of the atmos-
phere during periods of fairly weak circulation.

Further progress toward a satisfactory interpretation of the observed
mean flow patterns in the atmosphere requires that depth changes and ther-
mal effects resulting from the distribution of land and sea be taken into ac-
count.
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